Preprint
Article

Finishing of Nickel Matrix Composite Coatings

Altmetrics

Downloads

327

Views

213

Comments

0

This version is not peer-reviewed

Submitted:

28 November 2019

Posted:

29 November 2019

You are already at the latest version

Alerts
Abstract
Metal matrix composite are used in such fields of technology, such as: aerospace, electronics, energy, industry, defense, automotive, aviation, shipbuilding, and more. Composite coatings of ceramic - metals is used primarily to enhance the durability of machine parts. Therefore, new materials are permanently looked for, what has resulted in the past in development of composite materials. The coatings dispersed are consisting of metallic matrix (metals and their alloys) and small non-metallic particles. The deposition of ceramic particles simultaneously with metallic matrix leads often to composite coatings possessing properties much better than those of metallic coating. The nickel and less often, other iron group elements are usually used as a matrix and Al2O3 as tough particles. The welding technology of applying alloy and composite coatings is widely used. The technology of infrasound thermal spraying of metal matrix composite coatings was presented. It is a simple technology and a very useful one in ship machinery regeneration during the cruise craft (e.g. internal combustion engines, torque pumps, separators). The metal matrix composite coatings must undergo finishing due to high surface roughness after application. In the article to used finishing by plastic working and machining of coatings nickel matrix composite was proposed.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated