Recently, a new theory based on superluminal tunnelling has been proposed to explain the transition of highly energetic neutrinos propagating in matter to tachyonic states. In this work, we determine the possible mechanisms that lead neutrinos into a superluminal realm based on the assumption that ultrarelativistic particles travelling in matter lose part of their energy with the emission of Bremsstrahlung radiation. The obtained photons, in turn, can create neutrino-antineutrino pairs, one or both of which can be superluminal. We also prove that pair creation may occur with neutrino flavour oscillation provided that only one of them is a space-like particle. This suggests that mass oscillation and superluminal behaviour could be related phenomena. Finally, using the generalised Lorentz transformations, we formulate the Lagrangian of the kinematically allowed scattering processes. The structure of this Lagrangian is consistent with the formalism of the Standard Model. Based on this Lagrangian, at least one of the particles forming the pair must always be subluminal. The possibility that the pair creation process is mediated by a dark photon is also discussed.
Keywords:
Subject: Physical Sciences - Optics and Photonics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.