Preprint
Article

Statistical Error Propagation Affecting the Quality of Experience Evaluation in Video on Demand Applications

Altmetrics

Downloads

254

Views

170

Comments

0

This version is not peer-reviewed

Submitted:

09 December 2019

Posted:

11 December 2019

You are already at the latest version

Alerts
Abstract
In addition to the traditional QoS metrics of delay, delay jitter, and packet loss probability (PLP), Quality of Experience (QoE) is now widely accepted as a numerical proxy for actual user experience. The literature has reported many mathematical mappings between QoE and QoS. These QoS parameters are measured by the network providers using sampling. There are some papers studying sampling errors in QoS measurements; however there is no account of propagation of these sampling errors to QoE evaluation. In this paper, we used industrially acquired measurements of PLP and jitter to evaluate the sampling errors and correlation in measurements. Focussing on Video-on-demand (VoD) applications, we use subjective testing and regression to map QoE metrics onto PLP and jitter. The resulting mathematical functions of QoE and theory of error propagation was used to evaluate the propagated error in QoE, and this error was represented as confidence interval. Using the guidelines of UK government for sampling, our results indicate that confidence intervals around estimated QoE in a busy hour can be between MOS=1 to MOS=5 at targeted operating point of QoS parameters. These results are a new perspective on QoE evaluation, and are of great significance to all organisations that need to estimate the QoE VoD applications precisely.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated