Preprint
Article

High Performance Lithium-Rich Layered Oxide Material: Effects of Preparation Methods on Microstructure and Electrochemical Properties

Altmetrics

Downloads

276

Views

213

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 December 2019

Posted:

12 December 2019

You are already at the latest version

Alerts
Abstract
Lithium-rich layered oxides is one of the most perspective candidates for cathode materials of lithium ion battery, because of its high discharge capacity. However, there are some disadvantages of uneven composition, voltage decay, and poor rate capacity, which are closely related to the preparation method. Here, 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2 were successfully prepared by sol-gel and oxalate co-precipitation methods. A systematic analysis of the materials shows that the 0.5Li2MnO3·0.5LiMn0.8Ni0.1Co0.1O2 prepared by the oxalic acid co-precipitation method has the most stable layered structure and the best electrochemical performance. The initial discharge specific capacity is 261.6 mAh·g-1 at 0.05 C, and the discharge specific capacity is 138 mAh·g-1 at 5 C. The voltage decay is only 210 mV, and the capacity retention is 94.2% after 100 cycles at 1 C. The suppression of voltage decay can be attributed to the high nickel content and uniform element distribution. In addition, tightly packed porous spheres help to reduce lithium ion diffusion energy and improve the stability of the layered structure, thereby improving cycle stability and rate capacity. This conclusion provides a reference for designing high energy density lithium-ion batteries.
Keywords: 
Subject: Chemistry and Materials Science  -   Materials Science and Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated