Conditional heteroskedastic financial time series are commonly modelled by (G)ARCH processes. ARCH(1) and GARCH were recently established in C[0,1] and L^2[0,1]. This article provides sufficient conditions for the existence of strictly stationary solutions, weak dependence and finite moments of (G)ARCH processes for any order in C[0,1] and L^p[0,1]. It deduces explicit asymptotic upper bounds of estimation errors for the shift term, the complete (G)ARCH operators and the projections of ARCH operators on finite-dimensional subspaces. The operator estimaton is based on Yule-Walker equations, and estimating the GARCH operators also involves a result estimating operators in invertible linear processes being valid beyond the scope of (G)ARCH. Moreover, our results regarding (G)ARCH can be transferred to functional AR(MA).
Keywords:
Subject: Computer Science and Mathematics - Probability and Statistics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.