Preprint
Article

Strategies to Prevent Biofilm Infections on Biomaterials: Effect of Novel Naturally-Derived Biofilm Inhibitors on a Competitive Colonization Model of Titanium by Staphylococcus aureus and Human Cells

Altmetrics

Downloads

334

Views

265

Comments

0

Submitted:

11 December 2019

Posted:

12 December 2019

You are already at the latest version

Alerts
Abstract
Biofilm-mediated infection is a major cause of bone prosthesis failure. The lack of molecules able to act in biofilms has driven research aimed at identifying new anti-biofilm agents via chemical screens. However, to be able to accommodate a large number of compounds, the testing conditions of these screenings end up being typically far from the clinical scenario. In this study, we assess the potential applicability of three anti-biofilm compounds (based on natural compounds) as part of implanted medical devices by testing them on in vitro systems that more faithfully resemble the clinical scenario. To that end, we used a competition model based on the co-culture of SaOS-2 mammalian cells and Staphylococcus aureus (collection and clinical strains) on a titanium surface. Additionally, we studied whether these derivatives of natural compounds enhance the previously proven protective effect of pre-incubating the titanium surface with SaOS-2 cells. Out of the three tested leads, one showed the highest potential, and can be regarded as a promising agent for incorporation into bone implants. This study emphasizes and demonstrates the importance of using meaningful experimental models, where potential antimicrobials ought to be tested for protection of biomaterials in translational applications.
Keywords: 
Subject: Biology and Life Sciences  -   Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated