Preprint
Article

Teleconsultations between Patients and Healthcare Professionals in Primary Care in Catalonia: the Evaluation of Text Classification Algorithms Using Machine Learning

Altmetrics

Downloads

219

Views

443

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

15 December 2019

Posted:

17 December 2019

You are already at the latest version

Alerts
Abstract
Background: the primary care service in Catalonia has operated an asynchronous teleconsulting service between GPs and patients since 2015 (eConsulta), which has generated some 500,000 messages. New developments in big data analysis tools, particularly those involving natural language, can be used to accurately and systematically evaluate the impact of the service. Objective: the study was intended to examine the predictive potential of eConsulta messages through different combinations of vector representation of text and machine learning algorithms and to evaluate their performance. Methodology: 20 machine learning algorithms (based on 5 types of algorithms and 4 text representation techniques)were trained using a sample of 3,559 messages (169,102 words) corresponding to 2,268 teleconsultations (1.57 messages per teleconsultation) in order to predict the three variables of interest (avoiding the need for a face-to-face visit, increased demand and type of use of the teleconsultation). The performance of the various combinations was measured in terms of precision, sensitivity, F-value and the ROC curve. Results: the best-trained algorithms are generally effective, proving themselves to be more robust when approximating the two binary variables "avoiding the need of a face-to-face visit" and "increased demand" (precision = 0.98 and 0.97, respectively) rather than the variable "type of query"(precision = 0.48). Conclusion: to the best of our knowledge, this study is the first to investigate a machine learning strategy for text classification using primary care teleconsultation datasets. The study illustrates the possible capacities of text analysis using artificial intelligence. The development of a robust text classification tool could be feasible by validating it with more data, making it potentially more useful for decision support for health professionals.
Keywords: 
Subject: Medicine and Pharmacology  -   Other
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated