Preprint
Article

Dynamic Thermo-physical Characteristics of High Temperature Gaseous Hydrocarbon Fuel Thermal Power Generation for Regeneratively Cooled Hypersonic Propulsion System

Altmetrics

Downloads

328

Views

275

Comments

0

Submitted:

18 December 2019

Posted:

19 December 2019

You are already at the latest version

Alerts
Abstract
The aspirated hypersonic air-breathing propulsion system requires a large amount of power generation, but its special structure makes it impossible to adopt common power generation methods. The high-temperature gaseous hydrocarbon fuel thermal power generation (TPG) system was developed to solve the power generation problem for hypersonic air-breathing propulsion system. But off-design operating conditions of the hypersonic propulsion system results in a more complex process for both propulsion system and the TPG system. To better analyzing the dynamic thermos-physical characteristics of hypersonic airbreathing propulsion system considering thermal-mechanical coupling process among cooling/TPG system, a dynamic analytical model was developed, and the dynamic thermos-physical characteristics of TPG system under different off-design working conditions were conducted. It can be concluded from the analytical results that the dynamic process of thermos-physical characteristics shows a complex trend under the flight Mach number and fuel equivalence ratio off-design working conditions. Such complexity of dynamic characteristics brings difficulties in fuel supply for the propulsion system.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated