Preprint
Article

Time- and Dose-Dependent Effects of Ionizing Irradiation on the Membrane Expression of Hsp70 on Glioma Cells

Altmetrics

Downloads

345

Views

425

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

24 March 2020

Posted:

27 March 2020

You are already at the latest version

Alerts
Abstract
The major stress-inducible Hsp70 (HSPA1A) is overexpressed in the cytosol of many highly aggressive tumor cells including glioblastoma multiforme and presented on their plasma membrane. Depending on its intracellular or membrane localization, Hsp70 either promotes tumor growth or serves as a target for NK cells. The kinetics of the membrane Hsp70 (mHsp70) density on human glioma cells (U87) was studied after different irradiation doses to define the optimal therapeutic window for Hsp70-targeting NK cells. To maintain the cells in the exponential growth phase during a cultivation period of 7 days different initial cell counts were seeded. Although cytosolic Hsp70 levels remained unchanged on days 4 and 7 after a sublethal irradiation with 2 Gy, 4 Gy and 6 Gy, a dose of 2 Gy resulted in an upregulated mHsp70 density in U87 cells which peaks on day 4 and starts to decline on day 7. Higher radiation doses (4 Gy, 6 Gy) resulted in an earlier and more rapid onset of the mHsp70 expression on days 2 and 1, respectively, followed by a decline on day 5. Membrane Hsp70 levels are higher in G2/M than in G1, however, an irradiation-induced cell cycle arrest on days 4 and 7, was not associated with an increase in the mHsp70 density. Extracellular Hsp70 concentrations increased significantly compared to sham (0 Gy) irradiated cells on days 4 and 7 but not on day 1. Functionally, elevated mHsp70 densities were associated with a significantly better lysis by Hsp70-targeting NK cells. In summary, the kinetics of changes in the mHsp70 density upon irradiation on tumor cells is time- and dose-dependent.
Keywords: 
Subject: Biology and Life Sciences  -   Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated