Preprint
Article

An Overview of Emergent Order in Far-from-Equilibrium Driven Systems: From Kuramoto Oscillators to Rayleigh-Bénard Convection

This version is not peer-reviewed.

Submitted:

25 December 2019

Posted:

25 December 2019

You are already at the latest version

A peer-reviewed article of this preprint also exists.

Abstract
Soft-matter systems when driven out-of-equilibrium often give rise to structures that usually lie in-between the macroscopic scale of the material and microscopic scale of its constituents. In this paper we review three such systems, the two-dimensional square-lattice Ising model, the Kuramoto model and the Rayeligh-Bénard convection system which when driven out-of-equilibrium give rise to emergent spatio-temporal order through self-organization. A common feature of these systems is that the entities that self-assemble are coupled to one another in some way, either through local interactions or through a continuous media. Therefore, the general nature of non-equilibrium fluctuations of the intrinsic variables in these systems are found to follow similar trends as order emerges. Through this paper, we attempt to look for connections between among these systems and systems in general which give rise to emergent order when driven out-of-equilibrium.
Keywords: 
;  ;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.

Downloads

218

Views

178

Comments

0

Subscription

Notify me about updates to this article or when a peer-reviewed version is published.

Email

Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2025 MDPI (Basel, Switzerland) unless otherwise stated