Machine Learning (ML) approaches have been fruitfully applied to several classification problems of neurophysiological activity. Considering the relevance of emotion in human cognition and behaviour, ML found an important application field in emotion identification based on neurophysiological activity. Nonetheless, the literature results present a high variability depending on the neuronal activity measurement, the signal features and the classifier type. The present work aims to provide new methodological insight on ML applied to emotion identification based on electrophysiological brain activity. For this reason, we recorded EEG activity while emotional stimuli, high and low arousal (auditory and visual) were provided to a group of healthy participants. Our target signal to classify was the pre-stimulus onset brain activity. Classification performance of three different classifiers (LDA, SVM and kNN) was compared using both spectral and temporal features. Furthermore, we also contrasted the classifiers performance with static and dynamic (time evolving) features. The results show a clear increased in classification accuracy with temporal dynamic features. In particular, the SVM classifiers with temporal features showed the best accuracy (63.8 %) in classifying high vs. low arousal auditory stimuli.
Keywords:
Subject: Social Sciences - Behavior Sciences
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.