Preprint
Article

Fault Diagnosis of Diesel Engine Valve Clearance Based on Variational Mode Decomposition and Random Forest

Altmetrics

Downloads

262

Views

141

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

24 December 2019

Posted:

25 December 2019

You are already at the latest version

Alerts
Abstract
Diesel engines, as power equipment, are widely used in the fields of automobile industry, ship and power equipment. Due to wear or faulty adjustment, the valve train clearance abnormal fault is a typical failure of diesel engines, which may result in the performance degradation, even valve fracture and cylinder hit fault. However, the failure mechanism features mainly in time domain and angular domain, on which the current diagnosis methods based, are easily affected by working conditions or hard to extract accurate enough, as the diesel engine keeps running in transient and non-stationary process. This work arms at diagnosing this fault mainly based on frequency band features which would change when the valve clearance fault occurs. For the purpose of extracting a series of frequency band features adaptively,a decomposition technique based on improved variational mode decomposition is investigated in this work. As the connection between the features and the fault is fuzzy, the random forest algorithm is used to analyze the correspondence between features and faults. In addition, the feature dimension is reduced to improve the operation efficiency according to importance score. The experimental results under variable speed condition show that the method based on variational mode decomposition and random forest is capable to detect valve clearance fault effectively.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated