The bacterial flagellum is a motility organelle, consisting of a long helical filament as a propeller and a rotary motor that drives rapid filament rotation to produce thrust. Salmonella enterica serovar Typhimurium has two genes of flagellin, fljB and fliC, for flagellar filament formation and autonomously switches their expression at a frequency of 10-3–10-4 per cell per generation. We report here differences in their structures and motility functions under high viscosity conditions. A Salmonella strain expressing FljB showed a higher motility than the one expressing FliC under high viscousity. To examine the reasons for this motility difference, we carried out structural analyses of the FljB filament by electron cryomicroscopy and found that the structure is nearly identical to that of the FliC filament except for the position and orientation of the outermost domain D3 of flagellin. The density of domain D3 was much lower in FljB than FliC, suggesting that domain D3 of FljB is more flexible and mobile than that of FliC. These differences suggest that domain D3 plays an important role not only in changing antigenicity of the filament but also in optimizing motility function of the filament as a propeller under different conditions.
Keywords:
Subject: Biology and Life Sciences - Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.