Preprint
Article

Translation Efficiency and Degradation of ER-Associated mRNAs Modulated by ER-Anchored Poly(A)-Specific Ribonuclease (PARN)

Altmetrics

Downloads

224

Views

289

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

05 January 2020

Posted:

06 January 2020

You are already at the latest version

Alerts
Abstract
Translation is spatiotemporally regulated and ER-associated mRNAs are generally in efficient translation. It is unclear whether the ER-associated mRNAs are deadenylated or degraded on the ER surface in situ or in the cytosol. Here, we showed that ER possessed active deadenylases, particularly the poly(A)-specific ribonuclease (PARN), in common cell lines and mouse tissues. Consistently, purified recombinant PARN exhibited a strong ability to insert into the Langmuir monolayer and liposome. ER-anchored PARN was found to be able to reshape the poly(A) length profile of the ER-associated RNAs by suppressing long poly(A) tails without significantly influencing the cytosolic RNAs. The shortening of long poly(A) tails did not affect global translation efficiency, suggesting that the non-specific action of PARN towards long poly(A) tails was beyond the scope of translation regulation on the ER surface. Transcriptome sequencing analysis indicated that the ER-anchored PARN trigged the degradation of a small subset of ER-enriched transcripts. The ER-anchored PARN modulated the translation of its targets by redistributing ribosomes to heavy polysomes, suggesting that PARN may play a role in dynamic ribosome reallocation. During DNA damage response, MK2 phosphorylated PARN-Ser557 to modulate PARN translocation from the ER to cytosol. By promoting the decay of ER-associated MDM2 transcripts with low ribosome occupancy, the ER-anchored PARN modulated DNA damage response and thereby cell viability. These findings revealed that a highly regulated communication between mRNA degradation rate and translation efficiency is present on the ER surface in situ and that PARN may contribute to this communication by modulating the dynamic ribosome reallocation between transcripts with low and high ribosome occupancies.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated