Preprint
Article

Adaptive Flight Path Control of Airborne Wind Energy Systems

Altmetrics

Downloads

1279

Views

356

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

10 January 2020

Posted:

11 January 2020

You are already at the latest version

Alerts
Abstract
This paper presents a comparison between a kite model with a constant-length tether and a model based on a system identification algorithm. The concept of system identification is applied to predict the uncertainties related to the variation of the wind speed and the shape deformation of the tethered membrane wing during flight. A pole-placement controller is used to ensure that the kite follows the planned flight path. Thus, we can determine the required locations of the closed loop poles, and then enforce them by changing the controller's gains in real-time. The capability of the system identification algorithm to recognize sudden changes in the dynamic model, and the ability of the controller to stabilize the system in the presence of such changes are confirmed. Furthermore, the system identification algorithm is applied to determine the parameters of a kite with variable-length tether used in a flight test of the 20 kW kite power system of TU Delft. Experimental data of this test were compared with the system identification results in real-time and significant changes were observed in the parameters of the dynamic model which heavily affect the resulting response.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated