Preprint
Article

Automatic Neume Transcription of Medieval Music Manuscripts using CNN/LSTM-Networks and the segmentation-free CTC-Algorithm

Altmetrics

Downloads

430

Views

324

Comments

0

This version is not peer-reviewed

Submitted:

14 January 2020

Posted:

15 January 2020

You are already at the latest version

Alerts
Abstract
The automatic recognition of scanned Medieval manuscripts still represents a challenge due to degradation, non standard layouts, or notations. This paper focuses on the Medieval square notation developed around the 11th century which is composed of staff lines, clefs, accidentals, and neumes which are basically connected single notes. We present a novel approach to tackle the automatic transcription by applying CNN/LSTM networks that are trained using the segmentation-free CTC-loss-function which considerably facilitates the GT-production. For evaluation, we use three different manuscripts and achieve a dSAR of 86.0% on the most difficult book and 92.2% on the cleanest one. To further improve the results, we apply a neume dictionary during decoding which yields a relative improvement of about 5%.
Keywords: 
Subject: Computer Science and Mathematics  -   Data Structures, Algorithms and Complexity
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated