Preprint
Article

Rheological Properties and Application of Molasses Modified Bitumen in Hot Mix Asphalt (HMA)

Altmetrics

Downloads

463

Views

285

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

16 January 2020

Posted:

17 January 2020

You are already at the latest version

Alerts
Abstract
The high volume of water in molasses has made this study serious. The reason is that using molasses as a partial replacement without treatment significantly affects the rheological properties of the neat bitumen and increases the likelihood of moisture susceptibility of the hot-mix asphalt (HMA) pavement structure and create fractures of aggregate particles. Therefore, to use molasses as a partial replacement without affecting the structural integrity of the pavement, this study proposed a treatment method before blending it with petroleum-based bitumen. A series of experiment was conducted to accomplish the objective of this paper, including convectional tests, Fourier transform infrared (FTIR) test, amplitude and frequency sweep test, performance grade (PG) determination test, and multiple stress creep recovery (MSCR) tests. The IR spectra show that carbonyl index decreased with increasing molasses percent. There was PG improvement from the control grade to PG64 and PG70 when the base binder modified with 5-20% molasses and aged with rollingl thin film oven (RTFO) respectively. At the temperature 58oC nonrecoverable creep compliance at 3.2 kPa (Jnr3.2kPa) was decreased for each percent replacement. This led to improving the rutting potential. As well, at a temperature of 64oC the Jnr value was decreased only for 5% replacement, and then the Jnr value was gradually increased for the remaining percent replacement. Overall, this study revealed that treated molasses can be used as a partial replacement to enhance the rheological properties of the base bitumen and thus it can potentially be used to produce a sustainable bio-asphalt binder.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated