Preprint
Article

Averaging is Probably not the Optimum Way of Aggregating Parameters in Federated Learning

Altmetrics

Downloads

385

Views

398

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

17 January 2020

Posted:

19 January 2020

You are already at the latest version

Alerts
Abstract
Federated learning is a decentralized topology of deep learning, that trains a shared model through data distributed among each client (like mobile phones, wearable devices), in order to ensure data privacy by avoiding raw data exposed in data center (server). After each client computes a new model parameter by stochastic gradient decrease (SGD) based on their own local data, all locally-computed parameters will be aggregated in the server to generate an updated global model. Almost all current studies directly average different client computed parameters by default, but no one gives an explanation why averaging parameters is a good approach. In this paper, we treat each client computed parameter as a random vector because of the stochastic properties of SGD, and estimate mutual information between two client computed parameters at different training phases using two methods in two learning tasks. The results confirm the correlation between different clients and show an increasing trend of mutual information with training iteration. However, when we further compute the distance between client computed parameters, we find that parameters are getting more correlated while not getting closer. This phenomenon suggests that averaging parameters may not be the optimum way of aggregating trained parameters.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated