We study in this paper the time evolution of stock markets using a statistical physics approach. We consider an ensemble of agents who sell or buy a good according to several factors acting on them: the majority of the neighbors, the market ambiance, the variation of the price and some specific measure applied at a given time. Each agent is represented by a spin having a number of discrete states q or continuous states, describing the tendency of the agent for buying or selling. The market ambiance is represented by a parameter T which plays the role of the temperature in physics: low T corresponds to a calm market, high T to a turbulent one. We show that there is a critical value of T, say Tc, where strong fluctuations between individual states lead to a disordered situation in which there is no majority: the numbers of sellers and buyers are equal, namely the market clearing. The specific measure, by the government or by economic organisms, is parameterized by $H$ applied on the market at the time t1 and removed at the time t2. We have used Monte Carlo simulations to study the time evolution of the price as functions of those parameters. In particular we show that the price strongly fluctuates near Tc and there exists a critical value Hc above which the boosting effect remains after H is removed. Our model replicates the stylized facts in finance (time-independent price variation), volatility clustering (time-dependent dynamics) and persistent effect of a temporary shock. The second party of the paper deals with the price variation using a time-dependent mean-field theory. By supposing that the sellers and the buyers belong to two distinct communities with their characteristics different in both intra-group and inter-group interactions, we find the price oscillation with time. Results are shown and discussed.
Keywords:
Subject: Physical Sciences - Particle and Field Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.