Preprint
Article

Prediction of Discharge Capacity of Labyrinth Weir with Gene Expression Programming

Altmetrics

Downloads

297

Views

214

Comments

0

Submitted:

25 January 2020

Posted:

26 January 2020

You are already at the latest version

Alerts
Abstract
This paper proposes a model based on gene expression programming for predicting discharge coefficient of triangular labyrinth weirs. The parameters influencing discharge coefficient prediction were first examined and presented as crest height ratio to the head over the crest of the weir (p/y), crest length of water to channel width (L/W), crest length of water to the head over the crest of the weir (L/y), Froude number (F=V/√(gy)) and vertex angle () dimensionless parameters. Different models were then presented using sensitivity analysis in order to examine each of the dimensionless parameters presented in this study. In addition, an equation was presented through the use of nonlinear regression (NLR) for the purpose of comparison with GEP. The results of the studies conducted by using different statistical indexes indicated that GEP is more capable than NLR. This is to the extent that GEP predicts the discharge coefficient with an average relative error of approximately 2.5% in such a manner that the predicted values have less than 5% relative error in the worst model.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated