Preprint
Article

Information Length as a Useful Index to Understand Variability in the Global Circulation

Altmetrics

Downloads

98

Views

107

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

31 January 2020

Posted:

31 January 2020

You are already at the latest version

Alerts
Abstract
With improved measurement and modelling technology, variability has emerged as an essential feature in non-equilibrium processes. While traditionally, mean values and variance have been heavily used, they are not appropriate in describing extreme events where a significant deviation from mean values often occurs. Furthermore, stationary Probability Density Functions (PDFs) miss crucial information about the dynamics associated with variability. It is thus critical to go beyond a traditional approach and deal with time-dependent PDFs. Here, we consider atmospheric data from the Whole Atmosphere Community Climate Model (WACCM) and calculate time-dependent PDFs and the information length from these PDFs, which is the total number of statistically different states that a system passes through in time. Time-dependent PDFs are shown to be non-Gaussian in general, and the information length calculated from these PDFs shed us a new perspective of understanding variabilities, correlation among different variables and regions. Specifically, we calculate time-dependent PDFs and information length and show that the information length tends to increase with the altitude albeit in a complex form. This tendency is more robust for flows/shears than temperature. Also, much similarity among flows and shears in the information length is found in comparison with the temperature. This means a stronger correlation among flows/shears because of a strong coupling through gravity waves in this particular WACCM model. We also find the increase of the information length with the latitude and interesting hemispheric asymmetry for flows/shears/temperature, a stronger anti-correlation (correlation) between flows/shears and temperature at a higher (low) latitude. These results also suggest the importance of high latitude/altitude in the information budge in the Earth's atmosphere, the spatial gradient of the information as a useful proxy for the transport of physical quantities.
Keywords: 
Subject: Physical Sciences  -   Fluids and Plasmas Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated