Preprint
Article

This version is not peer-reviewed.

A Quantum Heat Exchanger for Nanotechnology

A peer-reviewed article of this preprint also exists.

Submitted:

06 February 2020

Posted:

07 February 2020

You are already at the latest version

Abstract
In this paper, we design a quantum heat exchanger which converts heat into light on relatively short quantum optical time scales. Our scheme takes advantage of collective cavity-mediated laser cooling of an atomic gas inside a cavitating bubble. Laser cooling routinely transfers individually trapped ions to nano-Kelvin temperatures for applications in quantum technology. The quantum heat exchanger which we propose here is expected to provide cooling rates of the order of Kelvin temperatures per millisecond and is expected to find applications in micro and nanotechnology.
Keywords: 
;  ;  ;  
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

Disclaimer

Terms of Use

Privacy Policy

Privacy Settings

© 2025 MDPI (Basel, Switzerland) unless otherwise stated