Preprint
Article

Key Steps in the Early Evolution of Life from the Origin of Protein Synthesis to Modern Cellular Life

Altmetrics

Downloads

1417

Views

454

Comments

0

This version is not peer-reviewed

Submitted:

11 February 2020

Posted:

12 February 2020

You are already at the latest version

Alerts
Abstract
The emergence of proteins in the prebiotic world was a watershed event at the origin of life. With their astonishing versatility, the protein enzymes catalyzed crucial biochemical reactions within protocells into more complex biomolecules in diverse metabolic pathways, whereas structural proteins provided strength and permeability in the cell membrane. Five major biochemical innovations followed in succession after availability of various kinds of protein molecules during decoding and translation of mRNAs. These are: (1) the modification of the phospholipid membrane into the plasma membrane; (2) the origin of primitive cytoplasm; (3) primitive gene regulation; (4) the beginnings of the virus world; and (5) the advent of DNA. The creative role of viruses during prebiotic synthesis led to the origin of the DNA world, when DNA replaced mRNA as the major genome of the protocells. With the advent of DNA, replication of information was entirely dissociated from its expression. Because DNA is much more stable than mRNA with more storage capacity, it is a superb archive for information systems in the form of base sequences. DNA progressively took over the replicative storage function of mRNA, leaving the latter for protein synthesis. Genetic information began to flow from DNA to mRNA to protein in a two-step process involving transcription and translation. In the biological stage, DNA replication was central to the binary fission of the first cell, orchestrated by the duplication of genomes and then the division of the parent cell into two identical daughter cells. With the onset of binary fission, the population of primitive cells grew rapidly in the hydrothermal vent environment, undergoing Darwinian evolution and diversification by mutation. The habitat of the earliest fossil record (≥ 3.5 Ga) from the Archean sedimentary rocks of Canada, Greenland, Australia, South Africa, and India offers a new window on the early radiation of microbial life. The development of anoxygenic and then oxygenic photosynthesis from early hyperthermophiles would have allowed life to escape the hydrothermal setting to the mesophilic global ocean.
Keywords: 
Subject: Environmental and Earth Sciences  -   Paleontology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated