Preprint
Article

Whole Virus Detection Using Paper Potentiometry and Aptamers

Altmetrics

Downloads

398

Views

365

Comments

0

This version is not peer-reviewed

Submitted:

18 February 2020

Posted:

20 February 2020

You are already at the latest version

Alerts
Abstract
Paper-based sensors, microfluidic platforms and electronic devices have attracted attention in the past couple of decades because they are flexible, can be recycled easily, environmentally friendly, and inexpensive. Here we report a paper aptamer-based potentiometric sensor to detect the whole Zika virus for the first time with a minimum sensitivity of 2.6 nV/Zika and the minimum detectable signal (MDS) of 1.2x106 Zika. Our paper sensor works very similar to a P-N junction where a junction is formed between two different wet regions with different electrochemical potentials near each other on the paper. These two regions with slightly different ionic contents, ionic species and concentrations, produce a potential difference given by the Nernst equation. Our paper sensor consisted of a 2-3 mm x 10 mm segments of a paper with a conducting silver paint contact patches on its two ends. The paper is soaked in a buffer solution containing aptamers designed to bind to the capsid proteins on Zika. Atomic force microscopy studies were carried out to show both the aptamer and Zika become immobilized in the paper. We then added the Zika (in its own buffer) to the region close to one of the silver-paint contacts. The Zika virus (40 nm diameter with 43 kDa or 7.1x10-20 gm weight), became immobilized in the paper’s pores and bonded with the resident aptamers creating a concentration gradient. The potential measured between the two silver paint contacts reproducibly became more negative as upon adding the Zika. We also showed that an LCD powered by the sensor, can be used to detect the sensor output.
Keywords: 
Subject: Engineering  -   Bioengineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated