You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Egyptian Mongoose Gut Microbiota: Taxonomical and Functional Differences across Sex and Age Classes

Altmetrics

Downloads

276

Views

305

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

20 February 2020

Posted:

21 February 2020

You are already at the latest version

Alerts
Abstract
Egyptian mongoose (Herpestes ichneumon) is a medium-size carnivore that in Europe is restricted to Iberia. The bio-ecology of this species remains to be elucidated in several dimensions, including gut microbiota that is nowadays recognized as a fundamental component of mammals. In this work, we investigated the gut microbiota of this herpestid by single-molecule real-time sequencing of twenty paired male (n=10) and female (n=10) intestinal samples. This culture-independent approach enabled microbial profiling based on 16S rDNA and investigation of taxonomical and functional features. The core gut microbiome of the adult subpopulation was dominated by Firmicutes, Fusobacteria, Actinobacteria, and Proteobacteria. Eight genera were uniquely found in adults and five in non-adults. When comparing gut bacterial communities across sex, four genera were exclusive of females and six uniquely found in males. Despite these compositional distinctions, alpha- and beta-diversity analyses showed no statistically significant differences across sex or between adult and non-adult specimens. However, males presented a significantly higher abundance of amino acid and citrate cycle metabolic pathways, compared to the significant overrepresentation in females of galactose’ metabolic pathways. Adults showed a significantly higher abundance of cationic antimicrobial peptide resistance pathways, while non-adults bared a significant overrepresentation of two-component systems associated with antibiotic synthesis, flagellin production and chemotaxis control. This study adds new insights into mongoose bio-ecology palette, highlighting taxonomical and functional microbiome dissimilarities across sex and age classes, possibly related to primary production resources and life-history traits that impact on behavior, diet and gut ecosystem.
Keywords: 
Subject: Biology and Life Sciences  -   Immunology and Microbiology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated