You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Optimal Phase Load Balancing in Low Voltage Distribution Networks Using a Smart Meter Data-Based Algorithm

Altmetrics

Downloads

286

Views

304

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 February 2020

Posted:

23 February 2020

You are already at the latest version

Alerts
Abstract
In the electric distribution systems, the “Smart Grid” concept is implemented to encourage energy savings and integration of the innovative technologies, helping the Distribution Network Operators (DNOs) in choosing the investment plans which to lead the optimal operation of the networks and increasing the energy efficiency. In this context, a new phase load balancing algorithm was proposed to be implemented in the low voltage distribution networks with hybrid structures of the consumption points (switchable and non-switchable consumers). It can work in both operation modes (on-line and off-line), uploading information from different databases of the DNO which contain: the consumers’ characteristics, the real loads of the consumers integrated into the Smart Metering System (SMS), and the typical load profiles for the consumers non-integrated in the SMS. The algorithm was tested in a real network, having a hybrid structure of the consumption points, on a time interval by 24 hours. The obtained results were analyzed and compared with other algorithms from the heuristic (Minimum Count of Loads Adjustment algorithm) and the metaheuristic (Particle Swarm Optimization and Genetic Algorithms) categories. The best performances were provided by the proposed algorithm, such that the unbalance coefficient resulted in the smallest value (1.0017). The phase load balancing led to the following technical effects: decreasing the average current in the neutral conductor with 94% and for the energy losses with 61.75 %, and increasing the minimum value of the phase voltage at the farthest pillar with the 7.14 %, compared to the unbalanced case.
Keywords: 
Subject: Engineering  -   Electrical and Electronic Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated