You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Energy-Momentum Tensor and Parameters in Cosmological Model

Altmetrics

Downloads

405

Views

173

Comments

0

This version is not peer-reviewed

Submitted:

24 February 2020

Posted:

25 February 2020

You are already at the latest version

Alerts
Abstract
In cosmology, the cosmic curvature $K$ and the cosmological constant $\Lambda$ are two most important parameters, whose values have strong influence on the behavior of the universe. By analyzing the energy-momentum tensor and equations of state of ideal gas, scalar, spinor and vector potential in detail, we find that the total mass density of all matter is always positive, and the initial total pressure is negative. Under these conditions, by qualitatively analyzing the global behavior of the dynamical equation of cosmological model, we get the following results: (i) $K= 1$, namely, the global spatial structure of the universe should be a 3-dimensional sphere $S^3$. (ii) $0\le\Lambda < 10 ^ {-24} {\rm ly} ^ {-2}$, the cosmological constant should be zero or an infinitesimal. (iii) $a(t)>0$, the initial singularity of the universe is unreachable, and the evolution of universe should be cyclic in time. This means that the initial Big Bang is impossible at all. Since the matter components considered are quite complete and the proof is very elementary and strict, these logical conclusions should be quite reliable. Obviously, these conclusions will be much helpful to correct some popular misconceptions and bring great convenience to further research other problems in cosmology such as property of dark matter and dark energy.
Keywords: 
Subject: Physical Sciences  -   Astronomy and Astrophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated