Preprint
Article

The Complexity of Mathematics

Altmetrics

Downloads

2395

Views

1857

Comments

1

This version is not peer-reviewed

Submitted:

03 June 2020

Posted:

04 June 2020

Read the latest preprint version here

Alerts
Abstract
In mathematics, the Riemann hypothesis is a conjecture that the Riemann zeta function has its zeros only at the negative even integers and complex numbers with real part 1/2. Many consider it to be the most important unsolved problem in pure mathematics. It is one of the seven Millennium Prize Problems selected by the Clay Mathematics Institute to carry a US 1,000,000 prize for the first correct solution. We prove the Riemann hypothesis using the Complexity Theory. Number theory is a branch of pure mathematics devoted primarily to the study of the integers and integer-valued functions. The Goldbach's conjecture is one of the most important and unsolved problems in number theory. Nowadays, it is one of the open problems of Hilbert and Landau. We show the Goldbach's conjecture is true using the Complexity Theory as well. An important complexity class is 1NSPACE(S(n)) for some S(n). These mathematical proofs are based on if some unary language belongs to 1NSPACE(S(log n)), then the binary version of that language belongs to 1NSPACE(S(n)) and vice versa.
Keywords: 
Subject: Computer Science and Mathematics  -   Computational Mathematics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated