Preprint
Article

Oxidation and Characterization of Low Concentration Gas in High-Temperature Reactor

Altmetrics

Downloads

256

Views

145

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

28 February 2020

Posted:

29 February 2020

You are already at the latest version

Alerts
Abstract
To achieve efficient utilization of low-concentration mine gas, reduce resource waste, and alleviate environmental pollution, high-temperature oxidation of low-concentration gas at a concentration range of 1.00% to 1.50% that is directly discharged into the atmosphere during coal mine production was oxidized to recover heat for reuse. The gas oxidation equipment was improved for the heating process, and the safety of low-concentration gas oxidation under high-temperature environment was evaluated. Experimental results showed that the reactor could provide a 1000 ℃ high-temperature oxidation environment for gas oxidation after installing high-temperature resistant ceramics. The pressure variation curves of the reactor with air and different concentrations of gas were similar. Due to the thermal expansion, the air pressure slightly increased and then returned to normal pressure. In contrast, the low-concentration gas exhibited a stable pressure response in the high-temperature environment of 1000 ℃. The outlet pressure was significantly greater than the inlet pressure, and the pressure difference between the inlet and outlet exhibited a trend to increase with the gas concentration. The explosion limit varied with the temperature and the blend with oxidation products. The ratio of measured gas pressure to air pressure after oxidation was below the explosion criterion, indicating that the measured concentration gas is still safe after the shift of explosion limit, which provides a safe concentration range for efficient use of low-concentration gas in the future.
Keywords: 
Subject: Engineering  -   Energy and Fuel Technology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated