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Abstract: Deep learning has achieved lots of successes in many fields, but when trainable sample
are extremely limited, deep learning often under or overfitting to few samples. Meta-learning was
proposed to solve difficulties in few-shot learning and fast adaptive areas. Meta-learner learns to
remember some common knowledge by training on large scale tasks sampled from a certain data
distribution to equip generalization when facing unseen new tasks. Due to the limitation of samples,
most approaches only use shallow neural network to avoid overfitting and reduce the difficulty
of training process, that causes the waste of many extra information when adapting to unseen
tasks. Euclidean space-based gradient descent also make meta-learner’s update inaccurate. These
issues cause many meta-learning model hard to extract feature from samples and update network
parameters. In this paper, we propose a novel method by using multi-stage joint training approach
to post the bottleneck during adapting process. To accelerate adapt procedure, we also constraint
network to Stiefel manifold, thus meta-learner could perform more stable gradient descent in limited
steps. Experiment on mini-ImageNet[1] shows that our method reaches better accuracy under 5-way
1-shot and 5-way 5-shot conditions.
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1. Introduction

With the rapid improvement of computer performance and the scale of trainable data, deep
learning models trained on large scale dataset could achieve huge improvement, some of them even
has better performance than human in many scenes like classification[2] and regression. Most deep
learning model could increase performance as the trainable data increase. But not every field has
enough data using in training model, tradition deep learning models are difficult to have the same level
learning ability and adaptability as humans when number of trainable samples is seriously insufficient.

One of the great advantages of human intelligence is that even children can learn to recognize
new unseen things through few information. For example, give child a image of certain animal, and
he can use it to grasp the feature of this species, and easily identify them when facing other images of
this animal. The logic behind this example is that human beings can complete the construction of new
task’ s feature and structures through the existing knowledge, and master faster and more accurate
learning methods based on the continuous experience. Tradition deep learning models are dedicated
to extracting embedding features from large scale data which belong to the same distribution and use
them to classify new samples. Thus, once the trainable data amount is insufficient, or be required to
quickly adapt to new unseen tasks, tradition models are difficult to deal with.

Meta-learning is used to explore and handle machine learning problems with limited trainable
data. The state-of-the-art approach in this field is Model-Agnostic Meta-Learning[3], which denoted
as MAML, this model provides a whole new structure to enhance the generalization performance.
Generally, MAML-based models contain three parts: i) common initial basics; ii) adapting process
and iii) gradient based updating rules to change network parameters inside meta-learner. These
three parts correspond to the basic knowledge, learning process and learning approach in human’s
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learning process in order. Meta-learning models usually embed a meta-learner which used to save
and generate initial parameters. Meta-learner can adapt to new unseen tasks T by finetuning network
parameters from few samples which has same classes in T . After meta-learner adapting to unseen
task T , some new samples are used to measure the performance of meta-learner by accuracy, then
model use optimizer to optimize the loss function object to update the whole model.

Since the adapting rule of meta-learner is fixed in MAML and model updates all parameters in
meta-learner’s network, MAML needs much more time to converge. Also, MAML starts training
meta-learner from a randomly initialized network θ, this force the model updates Feature Extractor
and Classify Layer of meta-learner at the same time, Arnold et al.[4] point out that MAML-based
models need much more network parameters than theoretically needed, because they should handle
basic knowledge and new knowledge in one network, and meta-learner use low-level layers to extract
features from sample data, use high-level layers such as full connect linear layer to classify.

As mentioned in Arnold’s conclusion, tiny change in high-level layers contribute much more
performance than layers in feature extractor during meta-test phase, so model can hardly optimize
feature extractor and classify layer from few samples. Most of meta-learners in MAML-based methods
only hold a shallow network which use few convolution layers as feature extractor. This factor further
limits the meta-learner’s ability to extract embedding features. In this paper, we tried deeper network
structure by perform pretrain on meta-learner’s feature extractor φ. Many excellent methods[5][6][7] in
meta-learning area execute pretrain to seek a feature extractor with enough generalization. Pretrained
on large scale data could let meta-learner focus more on how to do better classify based on higher
utilization of samples.

The updating rule is another issue of MAML that meta-learner perform evaluation on each step in
adapting process, but only the last evaluation result been taken into to judge the performance of model.
Meta-learner often executes multi updates in adapting process, it’s obviously that test accuracy on new
samples increase with the gradient descent performed on meta-learner’s network and the increasement
of accuracy is not linear related to steps, the increasement severely reduces in the middle and late
stage in adapting process, updating process would easily falls into the bottleneck without manual
intervention. Thus, we introduce multi-stage optimization method into MAML-based method. Model
sets some checkpoints during the middle and late stage in adapting process to improve performance
when stucks. This approach improves the utilization rate of training data under the limited update
steps. Differential based gradient descent often applied in adapting process, therefore even if the
network is very shallow, it still cannot guarantee the stability and the accuracy of direction in every
gradient descent step, especially for the scene that trainable sample and number of update steps are
extremely few.

In order to make up for the shortcomings that too much randomness in gradient descent, this
paper introduces method which used in Manifold learning that define network under the orthonormal
constraints. By constraint network geometry as Stiefel manifold or Lie group, the gradient on this
network can be presented by Lie algebra and projection from orthogonal space O(m) to Stiefel manifold
space St(m, n). This constraint reduces the scale of parameter search space during gradient descent
and improve the accuracy of gradient descent. In the remainder of this paper, we discuss detail of
methods and then execute experiment on open source image dataset mini-ImageNet to evaluate our
method.

The concept of meta-learning has been proposed decades ago, it first appear in education
industry[8][9][10] to represent a frame that students should make better use of existing knowledge
during learning and acquire better performance by mastering some basic knowledge and cooperating
with continuous improvement of learning methods in the life-long learning process.

Many machine learning fields cannot prepare enough trainable data or models are required
to adapt rapidly, meta-learning concept was introduced in machine learning. There are three
main technical directions, first approach based on metric: Siamese Network[11] and Prototypical
networks[12] calculate the similarity between samples, then classify them into predicted results by
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cosine distance; the second approach use a small extra neural network to replace gradient descent
by outputting the corrected gradient value during adapting process[13] to makes meta-learner learn
how to learn and what to learn rather than just learn a initial value; the third way based on gradient
descent, most of them based on MAML’s framework. These models update every layer of the neural
network inside meta-learner by apply gradient descent. Specifically, MAML-based approach is the
state-of-the-art algorithm in meta-learning field.

The detail of MAML algorithm is to embed meta-learner, a fully functional neural network model,
into meta-learning model. It uses meta-learner to adapt to unseen tasks by learning from training
data and output predictions. These methods constitute a dual-layer loop structure, this dual-layer
loop allows model optimize the adapting process as a whole to equip initial knowledge with great
generalization performance. MAML is also a framework for training and the design a model, thus it
has better versatility even in reinforcement learning[14][15][16].

Based on MAML, Probabilistic model-agnostic meta-learning[17] introduces probabilistic into
model to represent initial data, Kim[18] and Gupta[19] proposed Bayesian way into MAML to establish
relationship between post result and pre data by Bayesian prior probability. Meta-SGD[20] and
Task-Agnostic Meta-Learning(TAML)[21] try to make meta-learner learn how to learn better rather
than only remember initial knowledge.

After deeper neural networks such as Residual network(ResNet)[22] and Dense network[23] been
applied in machine learning, Qiao et al.[5]’s experiment shows that meta-learner could benefit from
deeper and more complex network and model could has much better feature extractor ability, as
mentioned by Arnold et al.[4] above. Training of meta-learner becomes harder with the scale expanded,
which not only reflected in program running speed but also the stability during training.

To reduce the amount of parameters need to be updated, Rusu et al.[6] mapping parameters to a
low-dimensional latent space as a way to reduce dimensions, then calculate gradients in latent space
to make gradient descent more stable. Sun et al.[7] also work on this direction by reducing the number
of parameters need to be optimized. We show that the most important part of MAML-based models
is feature extractor in experiment. Our meta-test approach comes from Meta-Transfer Learning for
Few-Shot Learning(MTL).

The idea that optimize the gradient descent itself by explore the geometry of homogeneous space
exists for many years, often treat networks as matrices in Manifold learning[24][25] and Lie group
learning[26][27] and constraint matrices to orthogonal group. Nishimori et al.[28] explore the gradient
on high-dimension space and this allows meta-learner make better use of limited data and information
in Euclidean space. Nishimori also derived this theory to a more general case which treat linear layer
as Stiefel manifold which orthogonal constrainted and use Lie group transitive to simplify calculation
process to a linear approximation. Yang et al.[29] has taken this approach in image classification
problem and got excellent performance.

2. Methods

Meta-learning model using lots of tasks {T } ∼ P(T ) to train meta-learner which T is the smallest
cell of training data, also denoted as meta-task. Training batch contains multi tasks, each task consists
of {Ttra, Tqry}. Meta-learner updates network parameters by using Ttra, then got prediction on Tqry.
The common setup for few-shot learning problem is (5-way 1-shot) and (5-way 5-shot), it means each
task consists of 5 classes of data, the count of training samples is 1 or 5, the number of samples used to
update model denoted as Kshot. The diagram of T is shown in Figure 1.

For example, (5-way 1-shot) learning problem means meta-learner been used to classify 5 classes
with only one trainable sample. A full train-test process contains two parts: meta− train and meta−
test, model training meta-learner in meta− train phase, then use datasets never been used in training
process to test meta-learner’s performance of adapting to new unseen tasks.
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Figure 1. Overview of a task T used in meta-train phase includes Ttra and Tqry. As described above,
the number of Ttra is Kshot and the number of Tqry is Kquery.

Figure 2. Diagram of our method, a fully inner loop process to optimize network θ in meta-learner.

Meta-task often splitted into two parts: {Ttra, Tqry} , there are Kshot samples in Ttra and Kqrery
samples in Tqry. When meta-learner finish learning from Ttra, model generate loss function based on
the prediction on Tqry, then use optimizers such as SGD or Adam[30] to optimize it.

In this paper, we denote the process which meta-learner update its parameters by Ttra as inner
loop, and denote the optimizing process on meta-learning model as outer loop. Therefore, we conclude
that the largest different between no-meta-learning structure model and MAML-based model is that
MAML-based model not only optimize the performance of meta-learner’s prediction accuracy but also
make it possible that optimize the process as a whole, no matter what meta-learner did and how it did
during inner loop. After every inner loop finished, model got a loss function object, this setup allows
model to use almost any approach to optimize the result from inner loop process. The updating rules
of inner and outer loop in MAML as follows.

θk,i = θk,i−1 − α∇θk,i−1
LTk f (θk,i−1) (1)

θ ← θ − β∇θ(∑Tk∼Batch LTk ( f (θk,m))) (2)

2.1. Pretrained by Large Scale Data

Meta-learner needs large scale trainable data to equip generalization when facing unseen tasks,
but its extreme unstable when use few samples to updating the whole network. Thus, MAML and
many MAML-based models trend to use very shallow network which only contain 4 convolutional
layers and a few full connect linear layers to avoid serious overfitting problem, but meta-learner
requires high quality and accurately feature extraction from samples, as mentioned before, its almost
impossible to update parameters of feature extractor φ and classify layer θ at the same moment.
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Training of parameters of meta-learner’s network starting from randomly initialization in
meta-train phase, it causes that every single parameter in meta-learner requires been updated to
fit few-shot setup conditions. The whole model should focus more on how to adapt under a series
of limitations rather than learns how to extract features from samples. Recently many meta-learning
models split meta-learner into two pieces logically: Feature extractor and Classify layer, thus some
models trend to pretrain the feature extractor part on large scale dataset[5][6][7]. Starting meta-train
phase after pretrain process completed can greatly reduce the pressure of meta-learner.

Models in few-shot learning and some transfer learning approaches actually learn bias which
related to new tasks of their parameters[31]. Our approach of pretrain consists with Sun et al.[5], first
construct a model with deep neural network trained on mini-ImageNet dataset’s subset [train ∪ val],
then save weights except classify layer. Additionally, we transfer these parameters φ to another model
to classify dataset’s test set and only update last classify layer to confirm the performance of this
feature extractor. updating rule shows in equation (3).

θ ← θ − α∇θ f cL f (θ) (3)

We draw conclusion that it’s possible to extract features from other data with different classes
using network trained on large scale dataset. The pretrain algorithm is summarized in Algorithm 1.

Algorithm 1 Pretrain

Require: D: {batch} ∼ p(T ) on large dataset
Require: α, epoch: learning rate and number of training epoches

1: Randomly initialize feature extractor φ and classify layer θ
2: Denote L as loss function
3: for i < epoch do

4: while not done do

5: Sample mini-batch {(x0, y0), (x1, y1)..} from D
6: Optimize [φ, θ] by gradient descent:φ← φ− α∇φLmini−batch( f[φ,θ]),

θ ← θ − α∇θLmini−batch( f[φ,θ])
7: end while
8: end for
9: Save parameters φ as pretrain initial φpre

Training feature extractor on different dataset could reduce the burden of meta-learner during
adapting processes and improve the whole model performance significantly. We modify updating
methods both in inner loop and outer loop, for inner loop part, meta-learner only apply gradient
descent on its classify layer and fix other parameters, this can speed up program speed and reduce
space cost; for outer loop, still not every parameter get optimized, model optimizes meta-learner’s
classify layer, all bias, convolutions layers which its filter’s kernel size is (1× 1) and related batch
normalization parameters. Specifically, our meta-learner uses wide residual network[32] with deep
scale WRN-K for 10, selective optimization reduce the number of parameters need to be updated by
90.9% compared to method of MTL[7]. Our optimize principle trends to updating inductive biases of
network to keep the ability of continuous adapting.

2.2. Multi-Stage Optimization

Meta-learning often compared to human’s growth process, such as the initialization parameters
learned through meta-train phase are similar to the structured general knowledge formed during the
human learning process, the method used in inner loop could be seen as the way human learn new
things. Inspired by pedagogy, a long education process can be splitted into several stages, human often
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test the performance at regular intervals to identify problems and make improvements on a timely
basis rather than only focus on last exam result.

Inner loop process is similar to human education, the increasement of performance during
inner loop adapting process are not linear, the accuracy on Tqry increase rapidly in first half but
almost stopped increasing at the middle even if there are still steps to end. Other MAML-based
approaches only focused on what meta-learner does in last step of inner loop[3][33][20] and they do
not optimize the performance in time when meta-learner enter the bottleneck, it causes that lots of
hidden information been wasted during adapting processes.

Under the premise of optimizing the result of the last step, we add some checkpoints to match
inner loop’s bottleneck places. This ensures that the accuracy keep increase to post the difficult points
and keep the accuracy until meets the end. Meta-learner produces a copy [φ, θ

′
] of network parameters

[φ, θ] at every step in inner loop. Model use these parameters to make predictions on Tqry which
compared to the grand true labels to generate loss function of this step. The count of inner loop
denoted as m, we manually decide where to be optimized. Checkpoints are indexes which denote the
place to joint current loss function into whole loss function which would be optimized in outer loop.
Checkpoints are as follows.

ckp := [r1, r2, ..ri] i < m (4)

When step index in ckp, generate loss function LTqry( f[φ,θ′ ]) by using query data Tqry, model

collected m + 1 loss functions after inner loop completed: Lckp
Tqry

( f[φ,θ′ ]) = ∑Lckpi
Tqry

( f[φ,θ′ ]), then adjust
their importance by multiplying the weight coefficient Wn = [w1, w2, ...wi], wx ∼ [0, 1]. The update
approach of outer loop shows in following.

[φ, θ]← [φ, θ]− β
(

grad[φ′ ,θ]Wm ⊗∑Lckpi
Tqry

( f[φ,θ′ ])
)

(5)

2.3. Lie Group Network Constrained

As mentioned before, meta-learning are required use as few steps as possible when adapting to
novel tasks to satisfy the requirements of rapid adaptation.

Most meta-learning methods apply update by gradient descent using ∇ f (θ), but it’s difficult for
meta-learner to generate gradient which can along nearest line when network holds tons of parameters.
The sensitivity of Euclidean gradient descent E-GD to the initial value of learning rate also makes these
models violate the original intention of the design such like Adaptability and Robustness. Although
there are proofs that Euclidean space based gradient descent offers better performance than some other
adaptive optimizers[34], but the conditions of meta-learning limits the number of steps, this reduce
the upper limit of gradient descent.

Adaptive optimizers such like Adam[30], AdaDelta[35] and SGD[36], they usually have faster
convergence speed during model training phase using same number of steps. When the number of
steps decreases further, the advantage over E-GD becomes tiny, this could be explained as adaptive
optimizers usually change the length of each steps but not edit the direction of descent V. Model works
on classify layer’s parameters θ in inner loop process, the single full connect linear layer structure
allows us define θ as a matrix w ∈ Rm×n, which dimension is m× n, elements in this is x ∈ R, set
m > n to simplify the expression.

Thus the output pass through feature extractor and classify layer of meta-learner can be modeled
as:

output = so f tmax(wTx + wbias) (6)
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Updating rule by E-GD to optimize the loss function formed by outputs and grand true labels as
follows, α is the step size.

w← w− α∇wLx f (w) (7)

The network’s parameter search space is Rm×n when using E-GD, so it’s difficult for model with
few updates to reach the convergence in time. There perhaps some latent geometric structures among
neural networks[28] and this allows us treat the full connection layer as a manifold. Gradient descents
on manifold have some advantages to E-GD: i) manifold limits by conditions, this significantly reduce
the scale of parameter space; ii) the gradients via geodesic flows offer better accuracy to speed up
convergence process. The geodesics is a distance minimizing curve between points in space with or
without structures. The optimizing process of neural network can be seen as connecting the initial
value position and stationary point of the loss function with the shortest path. Orthogonal constraint
often be used when considering add conditions to parameter matrix w:

w ∈ St(m, n) = {w ∈ Rm×n | wTw = In} (8)

Matrices satisfy this constraint are the points in Stiefel manifold, which can be seen as a Lie
group, it means all w of networks updating process constitute Stiefel manifold which belong to a
O(m, n) homogeneous space as the subspace of orthogonal Lie group O(m). Denote St(m, n) as a
Stiefel manifold with dimension m× n, O(m, n) is an orthogonal space with dimension m× n and
O(m)’s dimension is m×m. The regular way calculating geodesic on the manifold is searching nearest
subset from start point to target position[37][38].

Firstly, generate the neighborhood subset ∪s = {xi | 0 < i < l} of start point xs and analyze this
subset by propose an invariant scalar product gij(xi) under the automorphism at the identity element
position, then calculate gij(xi) and use results into equation follows.

d(xi, xj) =

√√√√i,j=1

∑
n

gij(xi)(xii − xji)(xij − xjj) (9)

Find every xi which less than threshold d by calculating the Euclidean distance between xi and xj
in set ∪s = {xi | 0 < i < l}. Repeat this process till comes up geodesic from start point xs to end xe.

But this approach costs too much computing resource because every point search paths passed
by has its neighborhood, these neighborhoods contain some elements which also have their own
neighborhoods, this defect becomes more and more serious as the dimension of parameter space
increases. St(m, n) usually be embedded into a O(m) matrix: W̃ = (w, I(m, m− n)) by adding O(n− p)
orthogonal column vectors, W̃ is a special case of Stiefel manifold when m = n. So it’s possible to
use Lie algebra to simplified geodesic searching process on orthogonal group. Linear mapping based
on matrix multiplication could naturally projection O(m) to St(m, n). Stiefel manifold itself is a
homogeneous space, thus there is transitive action by Lie group on it. From initial point W̃0, network
value can reach every position in Stiefel manifold by left multiplication G-action W̃1 = RW̃0[26].

Denote G(W̃) = {W ∈ St(m, n) | W = RW, R ∈ O(m)} as the space RW̃0 could reached, it’s
equivalent to the parameter space with orthogonal constraint. So the method which update parameter
matrix by multiplication a O(m) is feasible. Nature gradient via geodesic flow on O(m) can be obtained
by Lie algebra exponential map, which is proposed by Yasunori[28].
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W̃ ← W̃exp(−γW̃t
nṼH) (10)

ṼH = λ{∇ f (g(W̃))− W̃∇ f (g(W̃))TW̃} (11)

g(W̃) : O(m)→ St(m, n), W̃ ∈ O(p), g(W̃) = w ∈ St(m, n) (12)

Linear approximation could avoid exponential calculations by projection gradient from O(m) in
W̃ to St(m, n)[39]. Natural gradient on Stiefel manifold described by the following formula.

gradSt( f (w)) = ∇ f (w)− w∇ f (w)Tw (13)

Our method replaces the differential in Euclidean space with natural gradient in Stiefel manifold
and comes up the updating rule in inner loop process.

θ
′
= θ − α

(
∇θLTsup( f[φ,θ])− θ ×∇T

θ LTsup( f[φ,θ])× θ
)

(14)

We also compared the performance of the model using Stiefel manifold structure and E-GD under
the same other conditions. The method that use linear approximation natural gradient descent
guarantees the computational efficiency in backpropagation, and does not introduce new extra
parameters. Approaches in meta-train phase presented in Algorithm 2.

Algorithm 2 Meta-Train

Require: φpre: pretrained feature extractor parameters
Require: {α}, β, γ: learning rates for inner loop and outer loop
Require: p(T ): tasks from training data

1: Restore values from φpre to φ
2: Initialize classfiy layer θ to orthogonal matrix as a Stiefel manifold
3: while not done do

4: Sample tasks from p(T ) as a batch
5: for all T i in tasks do

6: Algorithm 3
7: end for
8: Sum evaluation results in every checkpoint: Lckp

Tqry
( f

[φ,θ′i ]
) = ∑Lckpi

T i
qry
( f[φ,θ′ ])

9: Optimize φ← φ− β
(
∇

φ
′Lckp
Tqry

( f
[φ,θ′i ]

)
)

by optimizer
10: Update θ ← θ− γ

(
∇

θ
′Lckp
Tqry

( f
[φ,θ′i ]

)− θ
′ ×∇T

θ
′Lckp
Tqry

( f
[φ,θ′i ]

)× θ
′)

via geodesic flows on the Stiefel

manifold
11: end while

Algorithm 3 Inner Loop

Require: T : a task in current batch
Require: {α}: learning rates of gradient descent

Split T into {Tsup, Tqry}
Get Euclidean gradient: ∇θLTsup( f[φ,θ]) using Tsup
Update θ by natural gradient descent on Stiefel manifold with scaling {α}: θ

′
= θ − {α} ⊗(

∇θLTsup( f[φ,θ])− θ ×∇T
θ LTsup( f[φ,θ])× θ

)
Evaluate θ

′
on Tqry: LTqry( f[φ,θ′ ]) when reach checkpoints
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3. Experiments

3.1. Dataset

Dataset used in experiment is the universal image dataset used in few-shot learning area:
mini-ImageNet[1], which is the subset of ImageNet[40]. Images in this dataset are natural photos, there
are 100 classes pictures and each class contain 600 images which usually cropped to 80× 80 pixels
in deep learning models. Mini-ImageNet often be splitted into three parts: Train, Validation and Test.
Training subset contains 64 classes images with 38400 samples, validation subset has 16 classes, 20
classes for test set.

3.2. Model Detail

Our completed training process consists of three phases: pretrain phase, meta-train phase and
meta-test phase. Training set and val set were used during pretrain phase, pretrain model and
meta-train model share the same network structure.

3.2.1. Pretrain Phase

We train a model on subsets [train ∪ val] of mini-ImageNet to classify 80 classes images. Network
structure used in feature extractor part is wide residual network[32] with 22 convolutional layers,
extended from Residual Network[22], the depth scale of filters in convolutional kernel is 10. Denote
this network as WRN-22-10.

Input data preprocessed by the initial part Conv-Batch normalization-ReLU in model. Depth of
residual block sets progression in three stages [160, 320, 640], each residual block set has 3 residual
blocks. Convolutional layer with 3× 3 kernel size shrinks the feature map size with stride 2 and
extend the depth, then Batch normalization and activation function ReLU[41] applied before data meet
second convolution layer. After two 3× 3 convolutional operations, the processed feature map been
added to the original input data.

Specifically, we insert dropout layer between convolutional layers in each residual block to make
its structure wide-dropout, the convolutional layers type we use is B(3, 3). According to Zagoruyko et
al.[32], dropout layer inside blocks could prevent overfitting, the keep− rate of these dropout set at 0.5.
Global average pooling with kernel size = 10 applied before data reach the classify layer.

We use this WRN-22-10 as feature extractor and add 2 linear layers with ReLU, output nodes of
classify layer is [1000, 5]. Initial learning rate set in 0.1 which used in the SGD optimizer. Batch size
is the smallest exponent of 2 greater than classes 80 at 128. Fully pretrain phase contains 100 epochs,
learning rate decay by 20% per 30 epochs.

3.2.2. Meta Train Phase

Because the gradient descent approach was changed to using natural gradient via geodesic, we
use single linear layer as the classify layer. The structure of feature extractor in meta-train phase was
same as pretrain model, whom parameters extended from pretrained model. Wide-drop[32] also been
used in meta-train stage but disabled in meta-test phase.

Parameters splitted into two parts during meta-train: classify layer θ and biases of feature extractor
φ
′
. Initial learning rate of inner loop use decay strategy, the learning rate multiply 0.99 after every

gradient descent. Loss function generated by query data Tqry and [θ
′
, φ] was optimized in outer

loop. Optimizer used on parameters in feature extractor is Adam[30] with initial learning rate 1e− 4.
Network in classify layer was updated by Stiefel manifold natural gradient to keep matrix always
orthogonal, the learning rate in this optimizing process is 0.01.

Due to the feature extractor has been trained in pretrain phase, model’s pressure in meta-train
reduced, and the requirement of data decreased than MAML. The number of tasks using in meta-train
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phase is 5K compared with 240K used in MAML as batch size=1, the number of iterations is also 15K.
Model uses weights trained on [train ∪ val] to test performance on test subset.

4. Results
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Figure 3. (a) Testing accuracy on mini-ImageNet dataset during pretrain phases for 100 epochs. (b) The
accuracy that transfer feature extractor to classify test subset, result shows that model can reach the
pretty high accuracy even only trains the classify layer.
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Figure 4. (a)(b) represent the accuracy results of 5-way 1-shot learning on mini-ImageNet dataset with
different settings, no sti in figures means gradient descent is Euclidean gradient, no stage is the setting
that disable the multi-stage optimizing method. (c)(d) show results under the setting 5-way 5-shot.

The classification accuracies of our method and other baselines are shown in Table 1. We achieved
the state-of-the-art results of the 5-way 1-shot and 5-way 5-shot on mini-ImageNet dataset. Performance
of 5-way 1-shot is similar to LEO[6]. Compared with our base model MTL[7], our method proves a
certain improvement by using manifold learning approach.

We also present contributions from each method we proposed, results show that deeper network
provide significant improvements on feature extraction. The application of Stiefel manifold learning
makes the performance of model increase by almost 1% on the basis in 5-way 1-shot learning problem.
It’s clear that feature extraction performance reaches the bottleneck when transfer to test set, multi-stage
optimization provide tiny improvements to the model. In the setting of machine learning, especially for
deep learning, the data in a dataset belong to a certain distribution, which make it possible for neural
network to learn the common information from the dataset, but whether these data actually belong
to a latent distribution is still unknown, so in a dataset there is a gap on training feature extraction
capabilities on subset1 and applying it to subset2.

5. Discussion

We introduced three approaches to solve problems of MAML: i) feature extraction; ii) information
utilization and iii) the efficiency of gradient descent. By saving intermediate states during adapting
processes, we postponed the position of bottleneck to increase the performance of model. Network
constrainted to Stiefel manifold offers better descent accuracy. These methods make our model
demonstrated the new state-of-the-art result under the setting of 5-way 1-shot and 5-shot.

But our model still cannot automatically improve existing feature extractor when encountering
new datasets, this limits the model’s upper limit of performance even trained and tested on a same
dataset. Because the optimization process of the model is logically divided into two parts, and they
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Table 1. Image classification results on mini-ImageNet under the setting of 5-way 1-shot or 5-way
5-shot. Results in this table reported from their papers.

Few-shot learning method 1-shot 5-shot

Metric Based
Matching Nets[1] 43.56± 0.84% 55.31± 0.73%
Relation Nets[42] 50.44± 0.82% 65.32± 0.70%
Prototypical Nets[12] 49.42± 0.78% 68.20± 0.66%

Gradient descent based
MAML[3] 48.70± 1.84% 63.11± 0.92%
Reptile[33] 49.97± 0.32% 65.99± 0.58%
meta-SGD[20] 50.47± 1.87% 64.03± 0.94%
LEO[6] 61.76± 0.15% 77.46± 0.12%
MTL[7] 61.20± 1.80% 75.50± 0.80%
TAML[21] 51.73± 1.88% 66.05± 0.85%

Memory augmented based
TADAM[43] 58.50± 0.30% 76.70± 0.30%
SNAIL[44] 55.71± 0.99% 68.66± 0.92%

MSML(Ours) No Sti 61.12±1.02% 75.13±0.41%
MSML(Ours) No Stages 61.50±0.82% 77.21±0.73%
MSML(Ours) 62.42±0.76% 77.32±0.66%

use completely different calculation methods and corresponding learning rates, how to coordinate the
step size between the two parts of the model through the adaptive learning rate is also a question to
solved. These are works need to be studied in the future to improve the adaptability of model.

6. Materials and Methods

6.1. Computational Requirements

Code used in experiments based on PyTorch and runs on Linux. Softwares required are Python
3.6, CUDA and cuDNN. We recorded the resource usage when running these experiments, program
requires 10.1GB GPU memory and 1.8GB memory under the setup of 5-way 5-shot learning.

6.2. Program Availability

Dataset and runnable code used in our experiments are available in https://github.com/Chacrk/
MSML_Project, detailed running instructions is also available in repository.

6.3. Running Experiment

Download mini-ImageNet dataset, images are croped to (84× 84), unzip file by run command
python3 proc_dataset.py in data folder. Enter directory pretrain and run python3 pretrain.py to get
pretrained weights data.

Pretrain phase last about 5.1 hours by using NVIDIA TITAN Xp and Intel Xeon E5-2620 v4. Enter
meta folder while pretrain process done and run command python3 main.py to run the experiment.
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