Static (SLS) and dynamic (DLS) light scattering techniques are assessed for their capacity to detect colloidal particles with diameters between d = 0.1 and 0.8 µm at very low concentrations in seawater. The detection limit of the apparatus was determined using model monodisperse spherical polystyrene latex particles with diameters 0.2 µm and 0.5 µm. It is shown that the concentration and size of colloids can be determined down to about 10-6 g/L. Seawater obtained from different locations in western Europe was characterized using light scattering. It was found that seawater filtered through 0.45 µm pore size membrane filters was within the experimental error the same as that of ultrapure Milli-Q water containing the same amount of sea salt and no colloids could be detected with DLS. When the seawater was filtered through 0.8 µm pore size filters, colloidal particles were detected. The measurements show that the concentration of colloids in the seawater samples is not higher than 10-6 g/L and that they have an average diameter of about 0.6 µm. We stress that these particles are not necessarily nanoplastics.