Preprint
Article

Aerial Images Processing for Car Detection using Convolutional Neural Networks: Comparison between Faster R-CNN and YoloV3

Altmetrics

Downloads

464

Views

113

Comments

0

This version is not peer-reviewed

Submitted:

11 March 2020

Posted:

12 March 2020

You are already at the latest version

Alerts
Abstract
In this paper, we address the problem of car detection from aerial images using Convolutional Neural Networks (CNN). This problem presents additional challenges as compared to car (or any object) detection from ground images because features of vehicles from aerial images are more difficult to discern. To investigate this issue, we assess the performance of two state-of-the-art CNN algorithms, namely Faster R-CNN, which is the most popular region-based algorithm, and YOLOv3, which is known to be the fastest detection algorithm. We analyze two datasets with different characteristics to check the impact of various factors, such as UAV's altitude, camera resolution, and object size. The objective of this work is to conduct a robust comparison between these two cutting-edge algorithms. By using a variety of metrics, we show that YOLOv3 yields better performance in most configurations, except that it exhibits a lower recall and less confident detections when object sizes and scales in the testing dataset differ largely from those in the training dataset.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated