A peer-reviewed article of this preprint also exists.
Abstract
The paper demonstrates the analysis of Corona Virus Disease based on a probabilistic model. It involves a technique for classification and prediction by recognizing typical and diagnostically most important CT images features relating to Corona Virus. The main contributions of the research include predicting the probability of recurrences in no recurrence (first time detection) cases at applying our proposed approach for feature extraction. The combination of the conventional statistical and machine learning tools is applied for feature extraction from CT images through four images filters in combination with proposed composite hybrid feature extraction (CHFS). The selected features were classified by the stack hybrid classification system(SHC). Experimental study with real data demonstrates the feasibility and potential of the proposed approach for the said cause.
Keywords:
Subject:
Computer Science and Mathematics - Information Systems
Preprints on COVID-19 and SARS-CoV-2
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Alerts
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.