Preprint
Article

Initial Review and Analysis of COVID-19 Host Genetics and Associated Phenotypes

Altmetrics

Downloads

4357

Views

10238

Comments

2

This version is not peer-reviewed

Submitted:

23 March 2020

Posted:

24 March 2020

You are already at the latest version

Alerts
Abstract
The global pandemic of COVID-19 accounts for more than 14,000 deaths worldwide. However, little is known about the host genetics interaction with infection and COVID-19 progression. To better understand the role of host genetics, we review the current literature, aggregate readily available genetic resources, and provide some updated analysis relevant to COVID-19 and associated phenotypes. Using the unrelated individuals in UK Biobank (total n = 337,579 across 5 populations), we aggregate human leukocyte antigen and ABO blood type frequencies. We find significant and consistent risk reduction of blood group O reported in Zhao et al. and encourage broad sharing of ABO blood type frequencies that are readily accessible across COVID-19 with mild, moderate, and severe/critical symptoms for robust inferences at https://tinyurl.com/abo-covid19. In addition, we generate polygenic risk scores (PRSs) weights for 29 blood measurements, including clinically relevant haematological measurements for COVID-19, such as lymphocyte count and percentage. Focusing on the 8 most COVID-19 clinically relevant blood measurements, we performed PRS-PheWAS analysis across 44 disease antigen measurements (n = 6,643 unrelated individuals in White British group), infectious diseases and acute respiratory infections (n = 20,928 cases and 349,000 controls across 3 population groups) and deaths (n = 1,846 cases and 368,082 controls), recorded in hospital inpatient record and death registry data, respectively, in UK Biobank, and find host genetic PRS associations with disease risk. Taken together, we anticipate these resources (https://github.com/rivas-lab/covid19) will aid in improving our understanding of host genetic risk factors playing a role in SARS-CoV-2 infection and COVID-19 disease severity.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated