Preprint
Concept Paper

Roles for the SNAP25 Linker Domain in the Fusion Pore and a Dynamic Plasma Membrane SNARE Acceptor Complex

Altmetrics

Downloads

275

Views

156

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

25 March 2020

Posted:

27 March 2020

You are already at the latest version

Alerts
Abstract
A recent paper demonstrates the importance of the linker region joining the two SNARE motifs of the neuronal t-SNARE SNAP25 for maintaining rates of secretion with roles for distinct segments in speeding fusion pore expansion (Shaaban et al., 2019, Elife. 8). Remarkably, lipid perturbing agents rescue a palmitoylation-deficient phenotype that includes slow fusion pore expansion, suggesting that protein-protein interactions have a role not only in bringing together the granule or vesicle membrane with the plasma membrane but also in orchestrating protein-lipid interactions leading to the fusion reaction. Furthermore, biochemical investigations demonstrate the importance of the C-terminal domain of the linker in the formation of the plasma membrane t-SNARE acceptor complex for synaptobrevin2 (Jiang, et al., 2019, FASEB J. 33:7985-7994;Shaaban et al., 2019, Elife. 8). This insight, together with biophysical and optical studies from other laboratories (Wang, et al., 2008, Molecular Biology of the Cell. 19:3944-3955; Zhao, et al., 2013, Proc Natl Acad Sci U S A. 110:14249-14254) suggests that the plasma membrane SNARE acceptor complex between SNAP25 and syntaxin and the resulting trans SNARE complex with the v-SNARE synaptobrevin form just milliseconds before fusion.
Keywords: 
Subject: Biology and Life Sciences  -   Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated