Preprint
Article

Smart Structural Health Monitoring of Flexible Pavements Using Machine Learning Methods

Altmetrics

Downloads

480

Views

424

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 April 2020

Posted:

03 April 2020

You are already at the latest version

Alerts
Abstract
The construction of different roads, such as freeways, highways, major roads or minor roads must be accompanied by constant monitoring and evaluation of service delivery. Pavements are generally assessed by engineers in terms of the smoothness, surface condition, structural condition and surface safety. Pavement assessment is often conducted using the qualitative indices such as international roughness index (IRI), pavement condition index (PCI), structural condition index (SCI) and skid resistance value (SRV), which are used for smoothness assessment, surface condition assessment, structural condition assessment, and surface safety assessment, respectively. In this paper, Tehran-Qom Freeway in Iran has been selected as the case study and its smoothness and pavement surface conditions are assessed. At 2-km intervals, a 100-meter sample unit is selected in the slow-speed lane (totally, 118 sample units). In these sample units, the PCI is calculated after a visual inspection of the pavement and the recording of distresses. Then, in each sample unit, the average IRI is computed. The purpose of this study is to provide a method for estimating PCI based on IRI. The proposed theory was developed by Random Forest (RF), and Random Forest optimized by Genetic Algorithm (RF-GA) methods and these methods were validated using correlation coefficient (CC), scattered index (SI), and Willmott’s index of agreement (WI) criteria. The proposed method reduces costs, saves time and eliminates the safety risks.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated