Carbon dioxide (CO2), a major greenhouse gas, capture and separation has recently become a crucial technological solution to reduce atmospheric emissions from fossil fuel burning. Thereafter, many efforts have been put forwarded to reduce the burden on climate change by capturing and separating them especially from larger power plants by the utilization of different technologies. Those technologies have often suffered from high operating cost and huge energy consumption. On right side, physical process such as adsorption is very cost effective process which have been widely used to adsorb different contaminants including CO2. Henceforth, this review covers the overall efficacies of CO2 capture by the utilization of carbon based materials through adsorption technology. Subsequently, we also address the associated challenges and future opportunities of carbon based materials (CBMs). For CO2 capture, it was found that CBMs followed the order of carbon nanomaterials (i.e., graphene, graphene oxides, carbon nanotubes and their composites) < mesoporous -microporous or hierarchical porous carbons < biochar and activated biochar < activated carbons.
Keywords:
Subject: Chemistry and Materials Science - Physical Chemistry
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.