The delivery of Cytochrome c (Cyt c) to the cytosol stimulates apoptosis in cells were its release from mitochondria and apoptosis induction is inhibited. We developed a drug delivery system consisting of Cyt c nanoparticles decorated with folate-poly(ethylene glycol)-poly(lactic-co-glycolic acid)-thiol (FA-PEG-PLGA-SH) to deliver Cyt c into cancer cells and test their targeting in the Lewis Lung Carcinoma (LLC) mouse model. Cyt c-PLGA-PEG-FA nanoparticles (NPs) of 253 ± 55 and 354 ± 11 nm were obtained by Cyt c nanoprecipitation, followed by surface decoration with the co-polymer SH-PLGA-PEG-FA, and compared to a nanoparticle-free formulation. Overexpression of FA in LLC cells and internalization of Cyt c-PLGA-PEG-FA nanoparticles (NPs) was confirmed by confocal microscopy. Caspase activation assays show NPs retain 88-96% Cyt c activity. The NP formulations were more efficient in decreasing LLC cell viability than the NP-free formulation, with IC50: 49.2 to 70.1 μg/ml versus 129.5 μg/ml, respectively. Our NP system is thrice as selective towards cancerous than normal cells. In-vivo studies using tagged nanoparticles show accumulation in mouse LLC tumor 5 min post-injection. In conclusion, our NP delivery system for Cyt c shows superiority over the NP-free formulation and reaches a folic acid-overexpressing tumor in an immune-competent animal model.
Keywords:
Subject: Biology and Life Sciences - Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.