Preprint
Article

Partial Unlock for COVID-19-Like Epidemics Can Save 1-3 Million Lives Worldwide

Altmetrics

Downloads

1183

Views

787

Comments

1

Submitted:

14 July 2020

Posted:

15 July 2020

You are already at the latest version

Alerts
Abstract
Background: A large percentage of deaths in an epidemic or pandemic can be due to overshoot of population (herd) immunity, either from the initial peak or from planned or unplanned exit from lockdown or social distancing conditions. Objectives: We study partial unlock or reopening interaction with seasonal effects in a managed epidemic to quantify overshoot effects on small and large unlock steps and discover robust strategies for reducing overshoot. Methods: We simulate partial unlock of social distancing for epidemics over a range of replication factor, immunity duration and seasonality factor for strategies targeting immunity thresholds using overshoot optimization. Results: Seasonality change must be taken into account as one of the steps in an easing sequence, and a two step unlock, including seasonal effects, minimizes overshoot and deaths. It may cause undershoot, which causes rebounds and assists survival of the pathogen. Conclusions: Partial easing levels, even low levels for economic relief while waiting on a vaccine, have population immunity thresholds based on the reduced replication rates and may experience overshoot as well. We further find a two step strategy remains highly sensitive to variations in case ratio, replication factor, seasonality and timing. We demonstrate a three or more step strategy is more robust, and conclude that the best possible approach minimizes deaths under a range of likely actual conditions which include public response.
Keywords: 
Subject: Biology and Life Sciences  -   Virology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated