Preprint
Hypothesis

Comparative Domain-Fold Analysis of the SARS-CoV-2 ORF1ab Polyprotein: Insight into Co-Evolution, Conservation of Folding Patterns, Potential Therapeutic Strategies, and the Possibility of Reemergence

Altmetrics

Downloads

884

Views

843

Comments

0

This version is not peer-reviewed

Submitted:

14 April 2020

Posted:

16 April 2020

You are already at the latest version

Alerts
Abstract
The high transmissibility and replication of SARS-CoV-2 have been attributed to enhanced protein functions which are dependent on protein folding. Our in silico study endeavored to scrutinize SARS-CoV-2 ORF1ab by analyzing the conserved folding patterns of its transcribed proteins. Accordingly, the findings indicated that SARS-CoV-2 ORF1ab shares domain-specific fold-fingerprints with a spectrum of unrelated organisms. Closer observation revealed slight changes in folding patterns engendered with small variation in the intrinsic amino acid sequence. By correlating with the evolvability-potential of RNA-viruses and COVID-19 pandemic, we hypothesize that SARS-CoV-2 could undergo fast recombination with the host, SARS-CoV-2 minor variants and other viral species resulting in a reservoir of SARS-CoV-2 quasispecies. It is highly possible that natural selection will cause a future emergence of evolved SARS-CoV-2-descendants. Nonetheless, we hope that this insightful study will assist in elucidating SARS-CoV-2 protein functionalities, development of vaccines, and the possibility and nature of future emergence.
Keywords: 
Subject: Biology and Life Sciences  -   Virology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated