Preprint
Article

A Study On Sums of Cubes of Generalized Fibonacci Numbers: Closed Formulas of $\sum_{k=0}^{n}x^{k}W_{k}^{3}$ and $\sum_{k=1}^{n}x^{k}W_{-k}^{3} $

Altmetrics

Downloads

362

Views

294

Comments

0

This version is not peer-reviewed

Submitted:

22 April 2020

Posted:

24 April 2020

You are already at the latest version

Alerts
Abstract
In this paper, closed forms of the sum formulas $\sum_{k=0}^{n}x^{k}W_{k}^{3}$ and $\sum_{k=1}^{n}x^{k}W_{-k}^{3}$ for the cubes of generalized Fibonacci numbers are presented. As special cases, we give sum formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers.
Keywords: 
Subject: Computer Science and Mathematics  -   Algebra and Number Theory
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated