Preprint
Article

Highly Conserved Homotrimer Cavity Formed by the SARS-CoV-2 Spike Glycoprotein: A Novel Binding Site

Altmetrics

Downloads

907

Views

822

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

22 April 2020

Posted:

24 April 2020

You are already at the latest version

Alerts
Abstract
An important stage in SARS-CoV-2 life cycle is the fusion of spike(S) protein with the ACE2 host-cell receptor. Therefore, to explore conserved features in S protein dynamics and to identify potentially novel regions for drugging, we measured variability derived from 791 viral genomes and studied its properties by MD simulation. The findings indicated that S2 subunit (HR1, CH, and CD domains) showed low variability, low fluctuations in MD, and displayed a trimer cavity. By contrast, the RBD domain, which is typically targeted in drug discovery programmes, exhibits more sequence variability and flexibility. Interpretations from MD suggest that the monomer is in constant motion showing transitions up-to-down state, and the trimer cavity may function as a 'bouncing spring' that may facilitates S protein interactions with ACE2. Feasibility of trimer cavity for potential drug target was examined by SBVS screening. Several hits that have already been validated or suggested to inhibit the SARS-CoV-2 virus in cell systems were identified; in particular, the data suggest an action mechanism for such molecules including Chitosan and macrolide types. These findings identify a novel binding-site formed by the S protein, that might assist in future drug discovery programmes aimed at targeting the CoV family of viruses.
Keywords: 
Subject: Biology and Life Sciences  -   Biophysics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated