The Standard Genetic Code (SGC) exists in every organism known on Earth. SGC evolution via early unique codon assignment, then later wobble, yields coding resembling the near-universal code. Below, later wobble also creates an optimal route to accurate codon assignment. This assignment time matches a previous mean time for ordered codes, exhibiting ≥ 90% of SGC order. Accurate evolution is also accessible, sufficiently frequent to appear in populations of 103 to 104 codes. SGC-like coding capacity, code order and assignments therefore arise together, in one attainable evolutionary intermediate. Examples, which plausibly resemble coding at evolutionary domain separation, are characterized.
Keywords:
Subject: Biology and Life Sciences - Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.