Preprint
Article

Vertical Organic Permeable Dual-Base Transistors for Logic Circuits

Altmetrics

Downloads

542

Views

564

Comments

0

A peer-reviewed article of this preprint also exists.

Submitted:

01 May 2020

Posted:

02 May 2020

You are already at the latest version

Alerts
Abstract
Vertical-channel organic dual-gate/base transistors would be highly interesting since vertical organic transistors are the fastest organic transistors demonstrated today. However, incorporating a dual gate/base structure into an ultra-short channel vertical architecture represents a substantial challenge. Here, we successfully realize a new device concept of vertical organic permeable dual-base transistors (OPDBTs), where either of both base electrodes can be used to change the on-currents and tune the threshold voltages. The optimized devices yield a high on-current density of 1.54 A cm-2 and a large current gain of 9.2×105, corresponding to a high transmission value of 99.998%. The detailed operation mechanisms are investigated by calibrated TCAD simulations with the Poole-Frenkel mobility model, Gaussian density of states and tunneling model. Finally, high-performance logic circuits, e.g. inverter, NAND/AND computation functions are demonstrated with one single OPDBT operating at supply voltages of < 2.0 V. We believe that OPDBTs offer a compact and technologically simple hardware platform with excellent application potential for vertical-channel organic transistors in complex logic circuits.
Keywords: 
Subject: Physical Sciences  -   Applied Physics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated