Preprint
Article

A Comparative Analysis of Image Denoising Problem: Noise Models, Denoising Filters and Applications

Altmetrics

Downloads

3694

Views

741

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

03 June 2020

Posted:

04 June 2020

You are already at the latest version

Alerts
Abstract
Noise reduction in medical images is a perplexing undertaking for the researchers in digital image processing. Noise generates maximum critical disturbances as well as touches the medical images quality, ultrasound images in the field of biomedical imaging. The image is normally considered as gathering of data and existence of noises degradation the image quality. It ought to be vital to reestablish the original image noises for accomplishing maximum data from images. Medical images are debased through noise through its transmission and procurement. Image with noise reduce the image contrast and resolution, thereby decreasing the diagnostic values of the medical image. This paper mainly focuses on Gaussian noise, Pepper noise, Uniform noise, Salt and Speckle noise. Different filtering techniques can be adapted for noise declining to improve the visual quality as well as reorganization of images. Here four types of noises have been undertaken and applied on medical images. Besides numerous filtering methods like Gaussian, median, mean and Weiner applied for noise reduction as well as estimate the performance of filter through the parameters like mean square error (MSE), peak signal to noise ratio (PSNR), Average difference value (AD) and Maximum difference value (MD) to diminish the noises without corrupting the medical image data.
Keywords: 
Subject: Computer Science and Mathematics  -   Computer Vision and Graphics
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated