Preprint
Article

Benchmark Synthetic Training Data for Artificial Intelligence-based Li-ion Diagnosis and Prognosis

Altmetrics

Downloads

954

Views

996

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

06 May 2020

Posted:

07 May 2020

You are already at the latest version

Alerts
Abstract
Accurate lithium battery diagnosis and prognosis is critical to increase penetration of electric vehicles and grid-tied storage systems. They are both complex due to the intricate, nonlinear, and path-dependent nature of battery degradation. Data-driven models are anticipated to play a significant role in the behavioral prediction of dynamical systems such as batteries. However, they are often limited by the amount of training data available. In this work, we generated the first big data comprehensive synthetic datasets to train diagnosis and prognosis algorithms. The proof-of-concept datasets are over three orders of magnitude larger than what is currently available in the literature. With benchmark datasets, results from different studies could be easily equated, and the performance of different algorithms can be compared, enhanced, and analyzed extensively. This will expend critical capabilities of current AI algorithms, tools, and techniques to predict scientific data.
Keywords: 
Subject: Computer Science and Mathematics  -   Artificial Intelligence and Machine Learning
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated