You are currently viewing a beta version of our website. If you spot anything unusual, kindly let us know.

Preprint
Article

Investigation of the Effect of Freeze-thaw Cycles on the Mechanical Properties of Hardened Self-compacting Concrete

Altmetrics

Downloads

324

Views

151

Comments

0

This version is not peer-reviewed

Submitted:

06 May 2020

Posted:

07 May 2020

You are already at the latest version

Alerts
Abstract
This study investigated the effects of freeze-thaw cycles on the mechanical properties of hardened self-compacting concrete for varying column heights. A column (100×20×300 cm) was fabricated by C30 self-compacting concrete in the laboratory and 10 cube samples (10x10x10 cm) were taken from fresh concrete as the references. After a period of 28 days, 160 core specimens (Ø67 mm in diameter) were taken from different column heights. Unit weight, water absorption, compressive strength, and freeze-thaw tests were performed on these 170 (10 reference cubic and 160 core) samples. The mechanical properties of the core specimens before freeze-thaw and after 8-56 freeze-thaw cycles were reported for varying column heights. The average compressive strength value of the reference cubic samples was determined as 40.28 MPa, while the compressive strengths of the core specimens before freeze-thaw were ranged from 40.25 MPa to 49.62 MPa, impying an increase in compressive strength values up to 23.18% compared to the reference cubic samples. Compressive strengths of the specimens subjected to 8 and 56 freeze-thaw cycles varied between 38.71‒48.07 MPa and 31.72‒39.11 MPa, respectively. Statistical analysis revealed that the compressive strength of the concrete exposed to 56 freeze-thaw cycles was significantly different from that of the other specimens.
Keywords: 
Subject: Engineering  -   Civil Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated