Preprint
Article

Characterization of the Relationship between the Chaperone and Lipid-Binding Functions of the 70-Kda Heat-Shock Protein, HspA1A

Altmetrics

Downloads

408

Views

427

Comments

1

A peer-reviewed article of this preprint also exists.

Submitted:

28 July 2020

Posted:

29 July 2020

You are already at the latest version

Alerts
Abstract
HspA1A, a molecular chaperone, translocates to the plasma membrane (PM) of stressed and cancer cells. This translocation results in HspA1A’s cell-surface presentation, which renders tumors radiation insensitive. To specifically inhibit the lipid-driven HspA1A’s PM translocation and devise new therapeutics it is imperative to characterize the unknown HspA1A’s lipid-binding regions and determine the relationship between the chaperone and lipid-binding functions. To elucidate this relationship, we determined the effect of phosphatidylserine (PS)-binding on the secondary structure and chaperone functions of HspA1A. Circular dichroism revealed that binding to PS resulted in minimal modification on HspA1A’s secondary structure. Measuring the release of inorganic phosphate revealed that PS-binding had no effect on HspA1A’s ATPase activity. In contrast, PS-binding showed subtle but consistent increases in HspA1A’s refolding activities. Furthermore, using a Lysine-71-Arginine mutation (K71A; a null-ATPase mutant) of HspA1A we show that although K71A binds to PS with affinities similar to the WT, the kinetics of the binding are significantly different, probably because of the mutant’s inability to achieve specific conformations. These observations suggest a two-step binding model that includes conformational changes and strongly support the notion that the chaperone and lipid-binding activities of HspA1A are dependent but the regions mediating these functions do not overlap. These findings provide the basis for future interventions to inhibit HspA1A’s PM-translocation in tumor cells, making them sensitive to radiation therapy.
Keywords: 
Subject: Biology and Life Sciences  -   Biochemistry and Molecular Biology
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated