In the past years, various intelligent machine learning and deep learning algorithms have been developed and widely applied for gearbox fault detection and diagnosis. However, the real-time application of these intelligent algorithms has been limited, mainly due to the fact that the model developed using data from one machine or one operating condition has serious diagnosis performance degradation when applied to another machine or the same machine with a different operating condition. The reason for poor model generalization is the distribution discrepancy between the training and testing data. This paper proposes to address this issue using a deep learning based cross domain adaptation approach for gearbox fault diagnosis. Labelled data from training dataset and unlabeled data from testing dataset is used to achieve the cross-domain adaptation task. A deep convolutional neural network (CNN) is used as the main architecture. Maximum mean discrepancy is used as a measure to minimize the distribution distance between the labelled training data and unlabeled testing data. The study proposes to reduce the discrepancy between the two domains in multiple layers of the designed CNN to adapt the learned representations from the training data to be applied in the testing data. The proposed approach is evaluated using experimental data from a gearbox under significant speed variation and multiple health conditions. An appropriate benchmarking with both traditional machine learning methods and other domain adaptation methods demonstrates the superiority of the proposed method.
Keywords:
Subject: Engineering - Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.