Preprint
Article

A Robust Deep Learning-Based Fault Diagnosis Method for Rotating Machinery

Altmetrics

Downloads

277

Views

237

Comments

0

A peer-reviewed article of this preprint also exists.

This version is not peer-reviewed

Submitted:

20 May 2020

Posted:

22 May 2020

You are already at the latest version

Alerts
Abstract
In the recent years, intelligent data-driven faultdiagnosis methods on gearboxes have been successfully developedand popularly applied in the industries. Currently, most ofthe machine learning techniques require that the training andtesting data are from the same distribution. However, thisassumption is difficult to be met in the real industries, sincethe gearbox operating conditions usually change in practice,which results in significant data distribution gap and diagnosticperformance deteriorations in applying the learned knowledgeon the new conditions. This paper proposes a deep learning-based domain adaptation method to address this issue. Theraw current signals are directly used as the model inputs fordiagnostics, which are easy to collect in the real industries andfacilitate practical applications. The maximum mean discrepancymetric is introduced to the deep neural network, the optimizationof which guarantees the extraction of generalized machineryhealth condition features across different operating conditions.The experiments on a real-world gearbox condition monitoringdataset validate the effectiveness of the proposed method, whichoffers a promising tool for cross-domain diagnosis in the realindustries.
Keywords: 
Subject: Engineering  -   Mechanical Engineering
Copyright: This open access article is published under a Creative Commons CC BY 4.0 license, which permit the free download, distribution, and reuse, provided that the author and preprint are cited in any reuse.
Prerpints.org logo

Preprints.org is a free preprint server supported by MDPI in Basel, Switzerland.

Subscribe

© 2024 MDPI (Basel, Switzerland) unless otherwise stated